Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Dirubidium aquapentachlorochromate(III) and dicaesium aquapentachlorochromate(III)

Annika K. Eriksson, ${ }^{\text {a* }}$ Barbara M. Casari ${ }^{\text {a }}$ and Vratislav Langer ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Inorganic Chemistry, Göteborg University, SE-41296 Göteborg, Sweden, and ${ }^{\mathbf{b}}$ Department of Environmental Inorganic Chemistry, Chalmers University of Technology, SE-41296 Göteborg, Sweden
Correspondence e-mail: anneka@chem.gu.se
Received 4 November 2003
Accepted 6 February 2004
Online 20 March 2004

The structures of the two novel title compounds, Rb_{2} $\left[\mathrm{CrCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, (I), and $\mathrm{Cs}_{2}\left[\mathrm{CrCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, (II), have been determined by single-crystal X-ray diffraction. Compounds (I) and (II) crystallize with Pnma and Cmcm symmetry, respectively. In (I), the Cr , three Cl and water O atom lie on a mirror plane; in (II), the $\mathrm{Cs}, \mathrm{Cr}, \mathrm{O}$ and one of the Cl atoms are at sites with $m 2 m$ symmetry. The chromate anions are in a pseudo-cubic environment of eight Rb^{+}cations in (I) and in a pseudo-octahedral environment of six Cs^{+}cations in (II). The structural arrangement correlates with the $r_{\text {anion }} / r_{\text {cation }}$ radius ratio.

Comment

Octahedral chromium(III) complexes have attracted increasing interest in the past decade, following the discovery of their catalytic properties. One application of these complexes is in homogeneous catalysis, where CO and CO_{2} are converted into organic compounds, such as methanol, under ambient conditions. The conversion into methanol may be of particular importance because it provides a possible way to reduce greenhouse gas emissions (Ogura \& Yoshida, 1987). Substitution reactions of ligands are slow in chromium(III) complexes, a fact that corresponds with their considerable stability. Compounds containing the aquapentachlorochromate(III) complex anion, $\left[\mathrm{CrCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2-}$, have been described previously (Ogura \& Yoshida, 1987) but have not been structurally characterized.

Two novel compounds were synthesized using the method of Palmer (1954) and were identified as $\mathrm{Rb}_{2}\left[\mathrm{CrCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, (I), and $\mathrm{Cs}_{2}\left[\mathrm{CrCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, (II), by single-crystal diffraction. Both structures consist of layers of chromate complexes, which are seen to be connected by $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds in (I) (Fig. 1 and Table 2). The position of the H atom could not be

Figure 1
The network of $\left[\mathrm{CrCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2-}$ anions in (I), showing the $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (dashed lines). Displacement ellipsoids are drawn at the 50% probability level.
determined in (II). Nevertheless, by analogy with the structure of $\mathrm{Cs}_{2}\left[\mathrm{FeCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (Greedan et al., 1980), the short $\mathrm{O} \cdots \mathrm{Cl}$ distances [3.380 (5) A] suggest the existence of bifurcated hydrogen bonds in (II) (Fig. 2).

The chromate anions in (I) and (II) occur in different environments; eight Rb^{+}cations form a pseudo-cubic environment in (I), whereas six Cs^{+}cations form a pseudo-octahedral environment in (II) (Figs. 3 and 4, and Tables 1 and 3). Coll et al. (1987) proposed that the $r_{\text {anion }} / r_{\text {cation }}$ ratio in alkali aquapentachlorometallates determines the structural type. In the present work, the anionic radius is defined by the average octahedral $M-X$ distance ($X=\mathrm{Cl}$ and O). The correlation between the ionic radius ratio and the structure type is shown in Table 4 for aquapentachlorometallates(III), including $\mathrm{Rb}_{2}\left[M \mathrm{Cl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right](M=\mathrm{Cr}, \mathrm{Fe}$, In and Tl$)$ and $\mathrm{Cs}_{2}\left[M \mathrm{Cl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ ($M=\mathrm{Cr}, \mathrm{Fe}, \mathrm{In}, \mathrm{Ir}, \mathrm{Rh}, \mathrm{Ru}$ and Tl). It is apparent that smaller

Figure 2
The network of $\left[\mathrm{CrCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2-}$ anions in (II), showing probable bifurcated hydrogen bonds (dashed lines). Displacement ellipsoids are drawn at the 50% probability level.

Figure 3
The pseudo-cubic environment of the chromate complex in (I). One atom of each type is labelled.

Figure 4
The pseudo-octahedral environment of the chromate complex in (II). One atom of each type is labelled.
radius ratios (1.21-1.24) correspond to the Cmcm structure, while larger radius ratios (1.30-1.65) correspond to the Pnma structure.

Experimental

The title compounds were synthesized according to the method of Palmer (1954). Stoichiometric proportions of $A \mathrm{Cl}$ salts ($A=\mathrm{Rb}$ and Cs) and hexavalent CrO_{3} were dissolved in 12 M hydrochloric acid $(6.0 \mathrm{ml})$. Ethanol (1.5 ml) was added in small portions. When the exothermal reaction was complete, a saturated solution of $A \mathrm{Cl}$ salt was added. The solution was first evaporated over a flame and, when crystals started to appear, the solution was evaporated over a boiling water bath. The violet-red products were left to cool in a desiccator over silica gel and were then washed with ethanol. The resulting mixture was dried in an evacuated desiccator over sulfuric acid. Redviolet single crystals were obtained of a size suitable for single-crystal diffraction analysis.

Compound (I)

Crystal data

$\mathrm{Rb}_{2}\left[\mathrm{CrCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=418.21$
Orthorhombic, Pnma
$a=13.7558$ (2) \AA
$b=9.7484$ (1) \AA
$c=7.1074$ (1) \AA
$V=953.08(2) \AA^{3}$
$Z=4$
$D_{x}=2.915 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 7643
reflections
$\theta=2.4-32.9^{\circ}$
$\mu=12.68 \mathrm{~mm}^{-1}$
$T=168$ (2) K
Rhombic octahedron, red-violet $0.10 \times 0.06 \times 0.03 \mathrm{~mm}$

inorganic compounds

Table 3
Selected interatomic distances (\AA) for (II).

$\mathrm{Cs} 1-\mathrm{Cl}^{\text {vi }}$	$3.392(2)$	$\mathrm{Cs} 2-\mathrm{Cl}^{\text {xi }}$	$3.6938(2)$
$\mathrm{Cs} 1-\mathrm{Cl}^{\text {vii }}$	$3.586(2)$	$\mathrm{Cs} 2-\mathrm{Cl}^{\text {viii }}$	$3.9934(2)$
$\mathrm{Cs} 1-\mathrm{Cl}^{\text {viii }}$	$3.734(4)$	$\mathrm{Cr}-\mathrm{O}$	$2.064(10)$
$\mathrm{Cs} 2-\mathrm{Cl}^{\text {ix }}$	$3.605(2)$	$\mathrm{Cr}-\mathrm{Cl} 2$	$2.308(4)$
$\mathrm{Cs} 2-\mathrm{Cl}^{\mathrm{x}}$	$3.665(2)$	$\mathrm{Cr}-\mathrm{Cl} 1$	$2.340(2)$

Symmetry codes: (vi) $x-1,1-y, z-\frac{1}{2}$; (vii) $1-x, y, z ;$ (viii) $x-\frac{1}{2}, y-\frac{1}{2}, z$; (ix) $1-x, 1-y, z-\frac{1}{2}$; (x) $\frac{1}{2}-x, y-\frac{1}{2}, z-1$; (xi) $1-x, 1-y,-z$.

Table 4

Correlation between space-group symmetry and $r_{\text {anion }} / r_{\text {cation }}$ ratio.
Cation radii for eightfold coordination from Shannon (1976).

Compound	Space group	$r_{\text {anion }} / r_{\text {cation }}$
$\mathrm{Rb}_{2}\left[\mathrm{TlCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \dagger$	Pnma	1.649
$\mathrm{Rb}_{2}\left[\mathrm{InCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \ddagger$	Pnma	1.649
$\mathrm{Rb}_{2}\left[\mathrm{FeCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \S$	Pnma	1.574
$\mathrm{Rb}_{2}\left[\mathrm{CrCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{\top}$	Pnma	1.550
$\mathrm{Cs}_{2}\left[\mathrm{TlCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \dagger$	Pnma	1.345
$\mathrm{Cs}_{2}\left[\mathrm{InCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \ddagger$	Pnma	1.308
$\mathrm{Cs}_{2}\left[\mathrm{FeCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \dagger \dagger$	Cmem	1.239
$\mathrm{Cs}_{2}\left[\mathrm{RuCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ \# \ddagger	Cmem	1.226
$\mathrm{Cs}_{2}\left[\mathrm{IrCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ §§	Cmem	1.224
$\mathrm{Cs}_{2}\left[\mathrm{RhCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{\boldsymbol{\sigma}} \boldsymbol{\sim}$	Cmam	1.218
$\mathrm{Cs}_{2}\left[\mathrm{CrCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ ब	Cmcm	1.217

\dagger Vasil'ev et al. (1994). \ddagger Solans et al. (1988). § O'Connor et al. (1979). © This work. $\dagger \dagger$ Greedan et al. (1980). 市 Hopkins et al. (1966). §§ Coll et al. (1987). © TG Thomas \& Stanko (1973).

The H -atom position in (I) was located from a Fourier difference map and was refined isotropically without any constraint. The highest peak of residual electron density for (II) is located at (0.0580, $-0.0025,0.2500$), $0.43 \AA$ from the O atom, and does not correspond to the missing H atom. An attempt to use the H -atom coordinates
determined by Greedan et al. (1980) for $\mathrm{Cs}_{2}\left[\mathrm{FeCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ led to an unreasonable result.

For both compounds, data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT and SADABS (Sheldrick, 2002); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BC1030). Services for accessing these data are described at the back of the journal.

References

Brandenburg, K. (2000). DIAMOND. Version 2.1d. Crystal Impact GbR, Bonn, Germany.
Bruker (2001). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Coll, R. K., Fergusson, J. E., Penfold, B. R., Rankin, D. A. \& Robinson, W. T. (1987). Aust. J. Chem. 40, 2115-2122.

Greedan, J. E., Hewitt, D. C., Faggiani, R. \& Brown, I. D. (1980). Acta Cryst. B36, 1927-1929.
Hopkins, E. H., Zalkin, A., Templeton, D. H. \& Adamso, M. G. (1966). Inorg. Chem. 5, 1431-1433.
O’Connor, C. J., Deaver, B. S. J. \& Sinn, E. (1979). J. Chem Phys. 70, 54615467.

Ogura, K. \& Yoshida, I. (1987). Electrochim. Acta, 32, 1191-1197.
Palmer, W. G. (1954). In Experimental Inorganic Chemistry. Cambridge University Press.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Solans, X., Moron, M. C. \& Palacio, F. (1988). Acta Cryst. C44, 965-967.
Thomas, C. K. \& Stanko, J. A. (1973). J. Coord. Chem. 2, 231-234.
Vasil'ev, A. D., Afanas'ev, M. L. \& Aleksandrov, K. S. (1994). Kristallografiya, 39, 920-922.

